
http://danga.com/words/

LiveJournal: Behind The Scenes
Scaling Storytime

June 2007
USENIX

Brad Fitzpatrick
brad@danga.com

danga.com / livejournal.com / sixapart.com

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/1.0/ or send a letter to 

Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

1



http://danga.com/words/

The plan...

 Refer to previous presentations for more 
details...
 http://danga.com/words/

 Questions anytime! Yell. Interrupt.
 Part 0:

− show where talk will end up
 Part I:

− What is LiveJournal? Quick history.
− LJ’s scaling history

 Part II:
− explain all our software,
− explain all the moving parts 

2



http://danga.com/words/

LiveJournal Backend: Today
(Roughly.)

User DB Cluster 1
uc1a uc1b

User DB Cluster 2
uc2a uc2b

User DB Cluster 3
uc3a uc3b

User DB Cluster N
ucNa ucNb

Job Queues (xN)
jqNa jqNb

Memcached

mc4

mc3

mc2

mcN

...

mc1

mod_perl

web4

web3

web2

webN

...

web1

BIG-IP

bigip2
bigip1 perlbal (httpd/proxy)

proxy4

proxy3

proxy2

proxy5

proxy1

Global Database

slave1

master_a master_b

slave2 ... slave5

MogileFS Database

mog_a mog_b

Mogile Trackers
tracker3tracker1

Mogile Storage Nodes

...
sto2
sto8

sto1

net.

djabberd
djabberd
djabberd

gearmand
gearmand1
gearmandN

“workers”
gearwrkN
theschwkN

slave1 slaveN
3



http://danga.com/words/

LiveJournal Overview 

 college hobby project, Apr 1999
 4-in-1:

− blogging
− forums
− social-networking (“friends”)
− aggregator: “friends page”

− “friends” can be external RSS/Atom
 10M+ accounts
 Open Source!

− server,
− infrastructure,
− original clients,

4



http://danga.com/words/

 memcached
− distributed caching

 MogileFS
− distributed filesystem

 Perlbal
− HTTP load balancer, web 

server, swiss-army knife
 gearman

− LB/HA/coalescing low-
latency function call 
“router”

 TheSchwartz
− reliable, async job 

dispatch system

 djabberd
− the super-extensible 

everything-is-a-plugin 
mod_perl/qpsmtpd/
Eclipse of XMPP/Jabber 
servers

 .....
 OpenID

 federated identity 
protocol

Stuff we've built...
(all production, open source)

5



http://danga.com/words/

“Uh, why?”

 NIH?  (Not Invented Here?)
 Are we reinventing the wheel?

6



http://danga.com/words/

Yes.

 We build wheels.
− ... when existing suck,
− ... or don’t exist.

7



http://danga.com/words/

Yes.

 We build wheels.
− ... when existing suck,
− ... or don’t exist.

7



http://danga.com/words/

Yes.

 We build wheels.
− ... when existing suck,
− ... or don’t exist.

7



http://danga.com/words/

Yes.

 We build wheels.
− ... when existing suck,
− ... or don’t exist.

(yes, arguably tires. sshh..)

7



http://danga.com/words/

Part I
Quick Scaling History

8



http://danga.com/words/

Quick Scaling History

 1 server to hundreds...

 you can do all this with just 1 server!
− then you’re ready for tons of servers, without pain
− don’t repeat our scaling mistakes

9



http://danga.com/words/

Terminology

 Scaling:
− NOT: “How fast?”
− But: “When you add twice as many servers, are you 

twice as fast (or have twice the capacity)?”
 Fast still matters,

− 2x faster: 50 servers instead of 100...
 that’s some good money

− but that’s not what scaling is.

10



http://danga.com/words/

Terminology

 “Cluster”
− varying definitions... basically:
− making a bunch of computers work together for 

some purpose
− what purpose?

 load balancing (LB),
 high availablility (HA)

 Load Balancing?
 High Availability?
 Venn Diagram time!

− I love Venn Diagrams

11



http://danga.com/words/

LB vs. HA

Load Balancing High Availability

12



http://danga.com/words/

LB vs. HA

Load 
Balancing

High 
Availability

http
reverse proxy,
wackamole,

...

round-robin DNS,
data partitioning,
....

LVS heartbeat,
cold/warm/hot spare,

...

13



http://danga.com/words/

Favorite Venn Diagram

Times When
I’m Truly Happy

Times When I’m
Wearing Pants

14



http://danga.com/words/

One Server

 Simple:

mysql

apache

15



http://danga.com/words/

Two Servers

mysql

apache

16



http://danga.com/words/

Two Servers - Problems

 Two single points of failure!
 No hot or cold spares
 Site gets slow again.

− CPU-bound on web node
− need more web nodes...

17



http://danga.com/words/

Four Servers

 3 webs, 1 db
 Now we need to load-balance!

 LVS, mod_backhand, whackamole, BIG-IP, 
Alteon, pound, Perlbal, etc, etc..

− ...

18



http://danga.com/words/

Four Servers - Problems

 Now I/O bound...
 ... how to use another database?

−

19



http://danga.com/words/

Five Servers
introducing MySQL replication

 We buy a new DB
 MySQL replication
 Writes to DB (master)
 Reads from both

20



http://danga.com/words/

More Servers

Chaos!

21



http://danga.com/words/

Where we're at....

mod_perl

web4

web3

web2

web12

...

web1

BIG-IP

bigip2
bigip1

mod_proxy

proxy3

proxy2

proxy1

Global Database

slave1 slave2 ... slave6

master

net.

22



http://danga.com/words/

Problems with Architecture
or,

“This don't scale...”

 DB master is SPOF
 Adding slaves doesn't scale 

well...
− only spreads reads, not writes!

200 writes/s 200 write/s

500 reads/s
250 reads/s

200 write/s

250 reads/s

23



http://danga.com/words/

Eventually...

 databases eventual only writing

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

24



http://danga.com/words/

Spreading Writes

 Our database machines already did RAID
 We did backups
 So why put user data on 6+ slave machines?  

(~12+ disks)
− overkill redundancy
− wasting time writing everywhere!

25



http://danga.com/words/

Partition your data!

 Spread your databases out, into “roles”
− roles that you never need to join between

 different users
 or accept you'll have to join in app

 Each user assigned to a numbered HA cluster
 Each cluster has multiple machines

− writes self-contained in cluster (writing to 2-3 machines, not 
6)

26



http://danga.com/words/

User Clusters

27



http://danga.com/words/

User Clusters

SELECT userid,
clusterid FROM 
user WHERE 
user='bob'

27



http://danga.com/words/

User Clusters

SELECT userid,
clusterid FROM 
user WHERE 
user='bob'

userid: 839
clusterid: 2

27



http://danga.com/words/

User Clusters

SELECT userid,
clusterid FROM 
user WHERE 
user='bob'

userid: 839
clusterid: 2

SELECT .... 
FROM ...
WHERE 
userid=839 ...

27



http://danga.com/words/

User Clusters

SELECT userid,
clusterid FROM 
user WHERE 
user='bob'

userid: 839
clusterid: 2

SELECT .... 
FROM ...
WHERE 
userid=839 ...

OMG i like 
totally hate 
my parents 
they just 
dont 
understand me 
and i h8 the 
world omg lol 
rofl *! :^-
^^;

add me as a 
friend!!!

27



http://danga.com/words/

Details

 per-user numberspaces
− don't use AUTO_INCREMENT
− PRIMARY KEY (user_id, thing_id)
− so:

 Can move/upgrade users 1-at-a-time:
− per-user “readonly” flag
− per-user “schema_ver” property
− user-moving harness

 job server that coordinates, distributed long-
lived user-mover clients who ask for tasks

− balancing disk I/O, disk space

28



http://danga.com/words/

Shared Storage
(SAN, SCSI, DRBD...)

 Turn pair of InnoDB machines into a cluster
− looks like 1 box to outside world.  floating IP.

 One machine at a time mounting fs, running MySQL
 Heartbeat to move IP, {un,}mount filesystem, {stop,start} 

mysql
 filesystem repairs,
 innodb repairs,
 don’t lose any committed transactions.

 No special schema considerations
 MySQL 4.1 w/ binlog sync/flush options

− good
− The cluster can be a master or slave as well

29



http://danga.com/words/

Shared Storage: DRBD

 Linux block device driver
− “Network RAID 1”
− Shared storage without sharing!
− sits atop another block device
− syncs w/ another machine's 

block device
 cross-over gigabit cable 

ideal.  network is faster than 
random writes on your disks.

 InnoDB on DRBD:  HA MySQL!
− can hang slaves off HA pair,
− and/or,
− HA pair can be slave of a 

master

drbd

sda

ext3

mysql

floater ip

drbd

sda

ext3

mysql

30



http://danga.com/words/

MySQL Clustering Options:
Pros & Cons

 No magic bullet...
− Master/Slave

 doesn’t scale with writes
− Master/Master

 special schemas
− DRBD

 only HA, not LB
− MySQL Cluster

 special-purpose
− ....

 lots of options!
− :)
− :(

31



http://danga.com/words/

Part II
Our Software

32



http://danga.com/words/

Caching

 caching's key to performance
− store result of a computation or I/O for quicker future 

access (classic space/time trade-off)
 Where to cache?

− mod_perl/php internal caching
 memory waste (address space per apache child)

− shared memory
 limited to single machine, same with Java/C#/

Mono
− MySQL query cache

 flushed per update, small max size
− HEAP tables

 fixed length rows, small max size

33



http://danga.com/words/

memcached
http://www.danga.com/memcached/

 our Open Source, distributed caching system
 implements a dictionary ADT, with network API

 run instances wherever free memory
 two-level hash

− client hashes* to server,
− server has internal dictionary (hash table)

 no “master node”, nodes aren’t aware of each 
other

 protocol simple, XML-free
− clients: c, perl, java, c#, php, python, ruby, ...

 popular, fast
 scalable

34



http://danga.com/words/

Protocol Commands

 set, add, replace
 delete
 incr, decr

− atomic, returning new value

35



http://danga.com/words/

Picture

36



http://danga.com/words/

Picture

10.0.0.100:11211
1GB

10.0.0.101:11211
2GB

10.0.0.102:11211
1GB

36



http://danga.com/words/

Picture

10.0.0.100:11211
1GB

10.0.0.101:11211
2GB

10.0.0.102:11211
1GB

36



http://danga.com/words/

Picture

10.0.0.100:11211
1GB

10.0.0.101:11211
2GB

10.0.0.102:11211
1GB

0 1 2 3

36



http://danga.com/words/

Picture

10.0.0.100:11211
1GB

10.0.0.101:11211
2GB

10.0.0.102:11211
1GB

Client

0 1 2 3

36



http://danga.com/words/

Picture

10.0.0.100:11211
1GB

10.0.0.101:11211
2GB

10.0.0.102:11211
1GB

Client

0 1 2 3

$val = $client->get(“foo”)

36



http://danga.com/words/

Picture

10.0.0.100:11211
1GB

10.0.0.101:11211
2GB

10.0.0.102:11211
1GB

Client

0 1 2 3

$val = $client->get(“foo”)
  CRC32(“foo”) % 4 = 2

36



http://danga.com/words/

Picture

10.0.0.100:11211
1GB

10.0.0.101:11211
2GB

10.0.0.102:11211
1GB

Client

0 1 2 3

$val = $client->get(“foo”)
  CRC32(“foo”) % 4 = 2
  connect to server[2]    (“10.0.0.101:11211”)

36



http://danga.com/words/

Picture

10.0.0.100:11211
1GB

10.0.0.101:11211
2GB

10.0.0.102:11211
1GB

Client

0 1 2 3

$val = $client->get(“foo”)
  CRC32(“foo”) % 4 = 2
  connect to server[2]    (“10.0.0.101:11211”)

GET foo

36



http://danga.com/words/

Picture

10.0.0.100:11211
1GB

10.0.0.101:11211
2GB

10.0.0.102:11211
1GB

Client

0 1 2 3

$val = $client->get(“foo”)
  CRC32(“foo”) % 4 = 2
  connect to server[2]    (“10.0.0.101:11211”)

GET foo (response)

36



http://danga.com/words/

Client hashing onto a memcacached 
node

 Up to client how to pick a memcached node
 Traditional way:

− CRC32(<key>) % <num_servers>
− (servers with more memory can own more slots)
− CRC32 was least common denominator for all 

languages to implement, allowing cross-language 
memcached sharing

− con: can’t add/remove servers without hit rate 
crashing

 “Consistent hashing”
− can add/remove servers with minimal <key> to 

<server> map changes

37



http://danga.com/words/

memcached internals

 libevent
− epoll, kqueue...

 event-based, non-blocking design
− optional multithreading, thread per CPU (not per 

client)
 slab allocator
 referenced counted objects

− slow clients can’t block other clients from altering 
namespace or data

 LRU
 all internal operations O(1)

38



http://danga.com/words/

Perlbal

39



http://danga.com/words/

Web Load Balancing

 BIG-IP, Alteon, Juniper, Foundry
− good for L4 or minimal L7
− not tricky / fun enough.  :-)

 Tried a dozen reverse proxies
− none did what we wanted or were fast enough

 Wrote Perlbal
− fast, smart, manageable HTTP web server / reverse proxy / LB
− can do internal redirects

 and dozen other tricks

40



http://danga.com/words/

Perlbal

 Perl
 parts optionally in C with plugins

 single threaded, async event-based
− uses epoll, kqueue, etc.

 console / HTTP remote management
− live config changes

 handles dead nodes, smart balancing
 multiple modes

− static webserver
− reverse proxy
− plug-ins (Javascript message bus.....)

 plug-ins
− GIF/PNG altering, ....

41



http://danga.com/words/

Perlbal: Persistent Connections

42



http://danga.com/words/

Perlbal: Persistent Connections

 perlbal to backends (mod_perls)
− know exactly when a connection is ready for a new 

request
 no complex load balancing logic:  just use whatever's free.  

beats managing “weighted round robin” hell.
 clients persistent; not tied to a specific backend 

connection

42



http://danga.com/words/

Perlbal: Persistent Connections

 perlbal to backends (mod_perls)
− know exactly when a connection is ready for a new 

request
 no complex load balancing logic:  just use whatever's free.  

beats managing “weighted round robin” hell.
 clients persistent; not tied to a specific backend 

connection

PB

42



http://danga.com/words/

Perlbal: Persistent Connections

 perlbal to backends (mod_perls)
− know exactly when a connection is ready for a new 

request
 no complex load balancing logic:  just use whatever's free.  

beats managing “weighted round robin” hell.
 clients persistent; not tied to a specific backend 

connection

PB

Apache

Apache

Client

Client

42



http://danga.com/words/

Perlbal: Persistent Connections

 perlbal to backends (mod_perls)
− know exactly when a connection is ready for a new 

request
 no complex load balancing logic:  just use whatever's free.  

beats managing “weighted round robin” hell.
 clients persistent; not tied to a specific backend 

connection

PB

Apache

Apache

Client

Client reqA1, B2

reqB1, A2

reqA1, A2

reqB1, B2

42



http://danga.com/words/

Perlbal: can verify new backend 
connections

 connects to backends are often fast, but...
 are you talking to the kernel’s listen queue?
 or apache?  (did apache accept() yet?)

 send OPTIONs request to see if apache is 
there
− Apache can reply to OPTIONS request quickly,
− then Perlbal knows that conn is bound to an 

apache process, not waiting in a kernel queue
 Huge improvement to user-visible latency!

 (and more fair/even load balancing)

#include <sys/socket.h>
int listen(int sockfd, int backlog);

43



http://danga.com/words/

Perlbal: multiple queues

 high, normal, low priority queues
 paid users -> high queue
 bots/spiders/suspect traffic -> low queue

44



http://danga.com/words/

Perlbal: cooperative large file serving

 large file serving w/ mod_perl bad...
− mod_perl has better things to do than spoon-feed 

clients bytes

45



http://danga.com/words/

Perlbal: cooperative large file serving

 internal redirects
− mod_perl can pass off serving a big file to Perlbal

 either from disk, or from other URL(s)
− client sees no HTTP redirect
− “Friends-only” images

 one, clean URL
 mod_perl does auth, and is done.
 perlbal serves.

46



http://danga.com/words/

Internal redirect picture

47



http://danga.com/words/

And the reverse...

 Now Perlbal can buffer uploads as well..
− Problems:

 LifeBlog uploading
−cellphones are slow

 LiveJournal/Friendster photo uploads
−cable/DSL uploads still slow

− decide to buffer to “disk” (tmpfs, likely)
 on any of: rate, size, time

 blast at backend, only when full request is in

48



http://danga.com/words/

Palette Altering GIF/PNGs

 based on palette indexes, colors in URL, 
dynamically alter GIF/PNG palette table, then 
sendfile(2) the rest.

49



http://danga.com/words/

MogileFS

50



http://danga.com/words/

oMgFileS

51



http://danga.com/words/

MogileFS

 our distributed file system
 open source
 userspace

 based all around HTTP (NFS support now removed)
 hardly unique

− Google GFS
− Nutch Distributed File System (NDFS)

 production-quality
− lot of users
− lot of big installs

52



http://danga.com/words/

MogileFS: Why

 alternatives at time were either:
− closed, non-existent, expensive, in development, 

complicated, ...
− scary/impossible when it came to data recovery

 new/uncommon/ unstudied on-disk formats
 because it was easy

− initial version = 1 weekend!  :)
− current version = many, many weekends :)

53



http://danga.com/words/

MogileFS: Main Ideas

 files belong to classes, 
which dictate:
− replication policy, min 

replicas, ...
 tracks what disks files 

are on
− set disk's state (up, 

temp_down, dead) 
and host

 keep replicas on devices 
on different hosts
− (default class policy)
− No RAID!

− multiple tracker 
databases

− all share same 
database cluster 
(MySQL, etc..)

 big, cheap disks
− dumb storage nodes 

w/ 12, 16 disks, no 
RAID

54



http://danga.com/words/

MogileFS components

 clients
 mogilefsd (does all real work)
 database(s)  (MySQL, .... abstract)
 storage nodes

55



http://danga.com/words/

MogileFS: Clients

 tiny text-based protocol
 Libraries available for:

− Perl
 tied filehandles
 MogileFS::Client

− my $fh = $mogc->new_file(“key”, [[$class], ...])
− Java
− PHP
− Python?
− porting to $LANG is be trivial
− future:  no custom protocol.  only HTTP

 clients don't do database access

56



http://danga.com/words/

MogileFS: Tracker
(mogilefsd)

 The Meat
 event-based message bus
 load balances client requests, world info
 process manager

− heartbeats/watchdog, respawner, ...
 Child processes:

− ~30x client interface (“query” process)
 interfaces client protocol w/ db(s), etc

− ~5x replicate
− ~2x delete
− ~1x fsck, reap, monitor, ..., ...

57



http://danga.com/words/

Trackers' Database(s)

 Abstract as of Mogile 2.x
− MySQL
− SQLite (joke/demo)
− Pg/Oracle coming soon?
− Also future:

 wrapper driver, partitioning any above
− small metadata in one driver (MySQL Cluster?),
− large tables partitioned over 2-node HA pairs 

 Recommend config:
− 2xMySQL InnoDB on DRBD
− 2 slaves underneath HA VIP

 1 for backups
 read-only slave for during master failover window

58



http://danga.com/words/

MogileFS storage nodes
(mogstored)

 HTTP transport
− GET
− PUT
− DELETE

 mogstored listens on 2 ports...
 HTTP.  --server={perlbal,lighttpd,...}

 configs/manages your webserver of choice.
 perlbal is default. some people like apache, etc

− management/status:
 iostat interface, AIO control, multi-stat() (for faster 

fsck)
 files on filesystem, not DB

− sendfile()!  future: splice()
− filesystem can be any filesystem

59



http://danga.com/words/

Large file 
GET 

request

60



http://danga.com/words/

Large file 
GET 

request

Auth: complex, but quick

60



http://danga.com/words/

Large file 
GET 

request

Auth: complex, but quick

Spoonfeeding: 
slow, but event-
based

60



http://danga.com/words/

Gearman

61



http://danga.com/words/

manaGer

62



http://danga.com/words/

Manager
dispatches work,

but doesn't do anything useful itself. :)

63



http://danga.com/words/

Gearman

 system to load balance function calls...
 scatter/gather bunch of calls in parallel,
 different languages,
 db connection pooling,
 spread CPU usage around your network,
 keep heavy libraries out of caller code,
 ...
 ...

64



http://danga.com/words/

Gearman Pieces

 gearmand
− the function call router
− event-loop (epoll, kqueue, etc)

 workers.
− Gearman::Worker – perl/ruby
− register/heartbeat/grab jobs

 clients
− Gearman::Client[::Async] -- perl

− also Ruby Gearman::Client
− submit jobs to gearmand

− opaque (to server) “funcname” string
− optional opaque (to server) “args” string
− opt coallescing key 

65



http://danga.com/words/

Gearman Picture

66



http://danga.com/words/

Gearman Picture

gearmand gearmand gearmand

66



http://danga.com/words/

Gearman Picture

Worker Worker

gearmand gearmand gearmand

66



http://danga.com/words/

Gearman Picture

Worker Worker

gearmand gearmand gearmand

can_do(“funcA”)

can_do(“funcA”)
can_do(“funcB”)

66



http://danga.com/words/

Gearman Picture

Client Worker Worker

gearmand gearmand gearmand

can_do(“funcA”)

can_do(“funcA”)
can_do(“funcB”)

66



http://danga.com/words/

Gearman Picture

Client Worker Worker

gearmand gearmand gearmand

call(“funcA”)
can_do(“funcA”)

can_do(“funcA”)
can_do(“funcB”)

66



http://danga.com/words/

Gearman Picture

Client Client Worker Worker

gearmand gearmand gearmand

call(“funcA”)
can_do(“funcA”)

can_do(“funcA”)
can_do(“funcB”)

66



http://danga.com/words/

Gearman Picture

Client Client Worker Worker

gearmand gearmand gearmand

call(“funcA”)

call(“funcB”)
can_do(“funcA”)

can_do(“funcA”)
can_do(“funcB”)

66



http://danga.com/words/

Gearman Protocol

 efficient binary protocol
 No XML
 but also line-based text protocol for admin 

commands
−telnet to gearmand and get status
−useful for Nagios plugins, etc

67



http://danga.com/words/

Gearman Uses

 Image::Magick outside of your mod_perls!
 DBI connection pooling (DBD::Gofer + 

Gearman)
 reducing load, improving visibility
 “services”

− can all be in different languages, too!

68



http://danga.com/words/

Gearman Uses, cont..

 running code in parallel
− query ten databases at once

 running blocking code from event loops
− DBI from POE/Danga::Socket apps

 spreading CPU from ev loop daemons
 calling between different languages,
 ...

69



http://danga.com/words/

Gearman Misc

 Guarantees:
− none!  hah!  :)

 please wait for your results.
 if client goes away, no promises

− all retries on failures are done by client
 but server will notify client(s) if working worker 

goes away.
 No policy/conventions in gearmand

− all policy/meaning between clients <-> workers
 ...

70



http://danga.com/words/

Sick Gearman Demo

 Don’t actually use it like this... but:
use strict;
use DMap qw(dmap);
DMap->set_job_servers("sammy", "papag");

my @foo = dmap { "$_ = " . `hostname` } (1..10);

print "dmap says:\n @foo";

$ ./dmap.pl
dmap says:
 1 = sammy
 2 = papag
 3 = sammy
 4 = papag
 5 = sammy
 6 = papag
 7 = sammy
 8 = papag
 9 = sammy
 10 = papag

71



http://danga.com/words/

Gearman Summary

 Gearman is sexy.
− especially the coalescing

 Check it out!
− it's kinda our little unadvertised secret

 oh crap, did I leak the secret?

72



http://danga.com/words/

TheSchwartz

73



http://danga.com/words/

TheSchwartz

 Like gearman:
− job queuing system
− opaque function name
− opaque “args” blob
− clients are either:

 submitting jobs
 workers

 But unlike gearman:
− Reliable job queueing system
− not low latency

− fire & forget (as opposed to gearman, where you wait for 
result)

 currently library, not network service

74



http://danga.com/words/

TheSchwartz Primitives

 insert job
 “grab” job (atomic grab)

− for 'n' seconds.
 mark job done
 temp fail job for future

− optional notes, rescheduling details..
 replace job with 1+ other jobs

− atomic.
 ...

75



http://danga.com/words/

TheSchwartz

 backing store:
− a database
− uses Data::ObjectDriver

 MySQL,
 Postgres,
 SQLite,
 ....

 but HA:  you tell it @dbs, and it finds one to 
insert job into
− likewise, workers foreach (@dbs) to do work

76



http://danga.com/words/

TheSchwartz uses

 outgoing email (SMTP client)
− millions of emails per day
− TheSchwartz::Worker::SendEmail
− Email::Send::TheSchwartz

 LJ notifications
− ESN: event, subscription, notification

 one event (new post, etc) -> thousands of emails, SMSes, 
XMPP messages, etc...

 pinging external services
 atomstream injection
 .....
 dozens of users
 shared farm for TypePad, Vox, LJ

77



http://danga.com/words/

gearmand + TheSchwartz

 gearmand: not reliable, low-latency, no disks
 TheSchwartz: latency, reliable, disks
 In TypePad:

− TheSchwartz, with gearman to fire off TheSchwartz 
workers.

 disks, but low-latency
 future:  no disks, SSD/Flash, MySQL Cluster

78



http://danga.com/words/

djabberd

79



http://danga.com/words/

djabberd

 Our Jabber/XMPP server
 powers our “LJ Talk” service

 S2S: works with GoogleTalk, etc
 perl, event-based (epoll, etc)
 done 300,000+ conns
 tiny per-conn memory overhead

− release XML parser state if possible

80



http://danga.com/words/

djabberd hooks

 everything is a hook
− not just auth!  like, everything.

− auth,
− roster,
− vcard info (avatars),
− presence,
− delivery,
− inter-node cluster delivery,

− ala mod_perl, qpsmtpd, etc.
 async hooks

− hooks phases can take as long as they want before 
they answer, or decline to next phase in hook chain...

− we use Gearman::Client::Async

81



http://danga.com/words/

Thank you!

Questions to:
brad@danga.com

Software:
http://danga.com/

http://code.sixapart.com/

82



http://danga.com/words/

Questions?

User DB Cluster 1
uc1a uc1b

User DB Cluster 2
uc2a uc2b

User DB Cluster 3
uc3a uc3b

User DB Cluster N
ucNa ucNb

Job Queues (xN)
jqNa jqNb

Memcached

mc4

mc3

mc2

mcN

...

mc1

mod_perl

web4

web3

web2

webN

...

web1

BIG-IP

bigip2
bigip1 perlbal (httpd/proxy)

proxy4

proxy3

proxy2

proxy5

proxy1

Global Database

slave1

master_a master_b

slave2 ... slave5

MogileFS Database

mog_a mog_b

Mogile Trackers
tracker3tracker1

Mogile Storage Nodes

...
sto2
sto8

sto1

net.

djabberd
djabberd
djabberd

gearmand
gearmand1
gearmandN

“workers”
gearwrkN
theschwkN

slave1 slaveN
83



http://danga.com/words/

Bonus Slides

 if extra time

84



http://danga.com/words/

Data Integrity

 Databases depend on fsync()
− but databases can't send raw SCSI/ATA commands 

to flush controller caches, etc
 fsync() almost never works work

− Linux, FS' (lack of) barriers, raid cards, controllers, 
disks, ....

 Solution: test! & fix
− disk-checker.pl

 client/server
 spew writes/fsyncs, record intentions on alive machine, 

yank power, checks.

85



http://danga.com/words/

Persistent Connection Woes

 connections == threads == memory
− My pet peeve:

 want connection/thread distinction in MySQL!
 w/ max-runnable-threads tunable

 max threads
− limit max memory/concurrency

 DBD::Gofer + Gearman
− Ask

 Data::ObjectDriver + Gearman

86


