LivedJournal: Behind

Scaling Storyti

June 2007
USENIX

Brad Fitzpatrick
brad@danga.com

danga.com / livejournal.com / sixapart.com

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/1.0/ or send a letter to

http://danga.com/words/

Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

SOMERIGHTS FESERLUED

The plan...

* Refer to previous presentations for more
details...

- http://danga.com/words/
* Questions anytime! Yell. Interrupt.

e Part O:
- show where talk will end up

* Part I
- What is LiveJournal? Quick history.

- LJ’s scaling history
* Part ll:

- explain all our software,
- explain all the moving parts

http://danga.com/words/

net.

LiveJournal Backend: Toda
(Roughly.)

Global Database

master_a ||master_b

slave1||slave?2 slave5

perlbal (httpd/proxy)

proxy 1

djabberd
| djabberd |

I User DB Cluster 1
"' ucla_ <= uctb

User DB Cluster 2
uc2a [**| uc2b

Mogile Storage Nodes

gearmand1
| gearmandN |

mCN User DB Cluster 3
i uc3a |« uc3b

Mogile Trackers
tracker1 | tracker3

User DB Cluster N

S ucNa [«==| ucNb
MogileFS Database i,
) gearwrkN RN Job Queues (xN)
mog_a | mog_ | theschwkN | | + > jgNa [==| jgNb
e T g iq

=\

httpl_Slavel |.o| slaveN | |

LivedJournal Ove

college hobby project, Apr 1999
4-in-1:
- blogging
- forums
- social-networking (“friends”)
- aggregator: “friends page”
- “friends” can be external RSS/Atom
10M+ accounts
Open Source!
- server,
- Infrastructure,
- original clients,

http://danga.com/words/

Stuff we've builit.

(all production, open source)

°* memcached
- distributed caching
* MogileFS
- distributed filesystem
* Perlbal
- HTTP load balancer, web
server, swiss-army knife
* gearman
- LB/HA/coalescing low-
latency function call
“router”
* TheSchwartz
- reliable, async job
dispatch system

http://danga.com/words/

* djabberd
- the super-extensible
everything-is-a-plugin
mod_perl/gpsmtpd/
Eclipse of XMPP/Jabber
servers

* OpeniD
» federated identity
protocol

* NIH? (Not Invented Here?)
* Are we reinventing the wheel?

= -\
http://danga.com/words/

 We build wheels.

- ... when existing suck,
- ... or don’t exist.

s =
http://danga.com/words/

Yes.

 We build wheels.
- ... when existing suck,
- ...ordon’t exist.

http://danga.com/words/

 We build wheels.
- ... when existing suck,
- ...ordon’t exist.

http://danga.com/words/

 We build wheels.

- ... when existing suck,
- ... or don’t exist.

P oleEd

(yes,?zrguably tires. sshh..)

http://danga.com/words/

Part |
Quick Scaling History

= =\
http://danga.com/words/ ‘ \

Quick Scali

* 1 server to hundreds...

e you can do all this with just 1 server!
- then you're ready for tons of servers, without pain
- don’t repeat our scaling mistakes

http://danga.com/words/

Terminol

» Scaling:
- NOT: "How fast?”
- But: "When you add twice as many servers, are you
twice as fast (or have twice the capacity)?”

* Fast still matters,

- 2x faster: 50 servers instead of 100...
e that's some good money

- but that’s not what scaling is.

http://danga.com/words/

Terminolo

e “Cluster”
- varying definitions... basically:
- making a bunch of computers work together for
some purpose
- what purpose?
* load balancing (LB),
* high availablility (HA)
* Load Balancing?
» High Availability?
* Venn Diagram time!
- | love Venn Diagrams

http://danga.com/words/

Load Balancing High Availability

= -\
http://danga.com/words/

12

LB v

Load
Balancing

High
Availability

LVS heartbeat,
cold/warm/hot spare,

round-robin DNS,

data partitioning, reverse proxy

wackamole,

http://danga.com/words/

Favorite Venn

Times When

I’'m Truly Happy

http://danga.com/words/

Times When I'm

Wearing Pants

=

=\

14

* Simple:

= -\
http://danga.com/words/

15

http://danga.com/words/

mysql

apache

A=

16

Two Servers

* Two single points of failure!
* No hot or cold spares

* Site gets slow again.
- CPU-bound on web node
- need more web nodes...

http://danga.com/words/

« 3webs, 1db

Four Se

e Now we need to load-balance!

 LVS, mod backhand, whackamole, BIG-IP,

Alteon, pound, Perlbal, etc, etc..

&=

=0 | B

http://danga.com/words/

Four Se

* Now I/O bound...
* ... how to use another database?

= -\
http://danga.com/words/

19

Five Serve

introducing MySQL r

* We buy a new DB
* MySQL replication
* Writes to DB (master)

 Reads from both

Writes/
Reads

CC

- Replication

http://danga.com/words/

Reads

Slave

http://danga.com/words/

More

O

-

=02 3 | i

Chaos!

net.

http://danga.com/words/

Where we'r

mod_proxy

proxy 1

Global Database

master

Problems with Archite

or,
“This don't scale...”

DB master is SPOF
* Adding slaves doesn't scale
well...
- only spreads reads, not writes!

500 reads/s
., 250 reads/s

200 write/s

200 writes/s

250 reads/s

http://danga.com/words/

200 write/s
@ |

23

Eventually...

» databases eventual only writing

400 400 400 400 400
write/s write/s write/s write/s write/s

Spreading

* Our database machines already did RAID
* We did backups
* So why put user data on 6+ slave machines”?
(~12+ disks)
- overkill redundancy
- wasting time writing everywhere!

http://danga.com/words/

Partition your

* Spread your databases out, into “roles”
- roles that you never need to join between
e different users
* or accept you'll have to join in app
* Each user assigned to a numbered HA cluster
* Each cluster has multiple machines
- writes self-contained in cluster (writing to 2-3 machines, not
6)

http://danga.com/words/

http://danga.com/words/

User

Failover

Global Master
User Cluster 3
&\
|

User CI

SELECT userid,
clusterid FROM
user WHERE
user="'bob'

Failover
Global Master
\ x12

[0

-,

http://danga.com/words/

User Cluster 3

User CI

SELECT userid,
clusterid FROM
user WHERE
user="'bob'

Failover
Global Master
/ \ x12

| Global Slave I
l User Cluster 1 I

[0

userid: 839
Clusterid: 2

l User Cluster 2 I

http://danga.com/words/

User Cluster 3

User Clu

SELECT userid, SELECT
clusterid FROM FROM ...
user WHERE WHERE
user="bob' userid=839

[0

Failover
Global Master
User Cluster 3
/ \ =
|

| Global Slave I
l User Cluster 1 I

userid: 839

Clusterid: 2 User Cluster 2

http://danga.com/words/

User Cluster

SELECT userid, SELECT
clusterid FROM FROM ...
user WHERE WHERE
user="bob' Ej;{iiki{i}ﬁii] userid=839

User Cluster 3

———] OMG i 1like
totally hate
my parents
they just

User Cluster 2 dont

understand me

and i h8 the

world omg 1ol

rofl *! /-
AN .

userid: 839
Clusterid: 2

add me as a
friend!!!

= -\
http://danga.com/words/

27

Detalils

* per-user numberspaces

-don'tuse AUTO INCREMENT

- PRIMARY KEY (user _id, thing_id)

-~ SO:
* Can move/upgrade users 1-at-a-time:

- per-user “readonly” flag

- per-user “schema_ver’ property

- user-moving harness
* job server that coordinates, distributed long-
ived user-mover clients who ask for tasks
- balancing disk 1/O, disk space

http://danga.com/words/

28

Shared Storage
(SAN, SCSI, DRBD...)

e Turn pair of InnoDB machines into a cluster
- looks like 1 box to outside world. floating IP.
* One machine at a time mounting fs, running MySQL
» Heartbeat to move IP, {un,}mount filesystem, {stop,start}
mysq|
* filesystem repairs,
* Innodb repairs,
* don’t lose any committed transactions.
* No special schema considerations
« MySQL 4.1 w/ binlog sync/flush options
- good
- The cluster can be a master or slave as well

http://danga.com/words/

29

Shared Storage: DRBD

 Linux block device driver

- “Network RAID 1~ floater 1p
- Shared storage without sharing!
- sits atop another block device mysql
- syncs w/ another machine's
block device ext3
* cross-over gigabit cable drbd (17| drbd
ideal. network is faster than
random writes on your disks. sda sda

* InnoDB on DRBD: HA MySQL!
- can hang slaves off HA pair,
- and/or,
- HA pair can be slave of a
master

http://danga.com/words/

30

MySQL Clustering
Pros & Co

* No magic bullet...
- Master/Slave
* doesn’t scale with writes

- Master/Master
» special schemas

- DRBD
* only HA, not LB

- MySQL Cluster

» special-purpose

+ lots of options!
— :)
— :(

http://danga.com/words/

Part Il
Our Software

http://danga.com/words/ /L‘ ‘d\

32

Caching

e caching's key to performance
- store result of a computation or |/O for quicker future
access (classic space/time trade-off)
* Where to cache?
- mod_ perl/php internal caching
 memory waste (address space per apache child)
- shared memory
* limited to single machine, same with Java/C#/
Mono
- MySQL query cache
* flushed per update, small max size
- HEAP tables
» fixed length rows, small max size

http://danga.com/words/

33

memcached

http://www.danga.com/memcached/

* our Open Source, distributed caching system
* implements a dictionary ADT, with network API
* run instances wherever free memory
* two-level hash
- client hashes™ to server,
- server has internal dictionary (hash table)
* no "master node”, nodes aren’'t aware of each
other
 protocol simple, XML-free
- clients: c, perl, java, c#, php, python, ruby, ...
* popular, fast
 scalable

http://danga.com/words/

34

Protoc

 set, add, replace
* delete

* incr, decr
- atomic, returning new value

= -\
http://danga.com/words/

35

http://danga.com/words/

10.0.0.100:11211
1GB

10.0.0.101:11211
2GB

10.0.0.102:11211
1GB

http://danga.com/words/

=

i

36

10.0.0.100:11211
1GB

10.0.0.101:11211
2GB

10.0.0.102:11211
1GB

http://danga.com/words/

=

i

36

10.0.0.100:11211
1GB

10.0.0.101:11211
2GB

10.0.0.102:11211
1GB

0

http://danga.com/words/

3

=

i

36

10.0.0.100:11211
1GB

10.0.0.101:11211
2GB

10.0.0.102:11211
1GB

0

http://danga.com/words/

3

=

i

36

10.0.0.100:11211
1GB

10.0.0.101:11211
2GB

10.0.0.102:11211
1GB

0

http://danga.com/words/

1 | 2

$val = $client->get(“foo™)

3

=

i

36

10.0.0.100:11211

10.0.0.101:11211

10.0.0.102:11211

1GB 2GB 1GB
0 1 | 2 3
$val = $client->get(“foo™)
CRC32(“f00”) % 4 =2
& | D

http://danga.com/words/

36

10.0.0.100:11211 10.0.0.101:11211 10.0.0.102:11211
1GB 2GB 1GB
0 1 | 2 | 3

$val = Sclient->get(“f00”)
CRC32(*“f00) % 4 =2
connect to server[2] (“10.0.0.101:11211”)

= | -\
http://danga.com/words/

36

10.0.0.100:11211 10.0.0.101:11211 10.0.0.102:11211
1GB P 2GB 1GB

0

2 3

$val = Sclient->get(“f00”)
CRC32(*“f00) % 4 =2
connect to server[2] (“10.0.0.101:11211”)

= | -\
http://danga.com/words/

36

10.0.0.100:11211 10.0.0.101:11211 10.0.0.102:11211
1GB P 2GB 1GB

/

0

2 3

GET foo (response)
$val = Sclient->get(“f00”)
CRC32(*“f00) % 4 =2
connect to server[2] (“10.0.0.101:11211”)

= | -\
http://danga.com/words/

36

Client hashing onto a memcacached
node

* Up to client how to pick a memcached node

 Traditional way:

- CRC32(<key>) % <num_servers>

- (servers with more memory can own more slots)

- CRC32 was least common denominator for all
languages to implement, allowing cross-language
memcached sharing

- con: can’'t add/remove servers without hit rate
crashing

* “Consistent hashing”
- can add/remove servers with minimal <key> to
<server> map changes

http://danga.com/words/

37

memecached intern

* libevent
- epoll, kqueue...

* event-based, non-blocking design
- optional multithreading, thread per CPU (not per
client)

e slab allocator

 referenced counted objects
- slow clients can’t block other clients from altering
namespace or data

* LRU
» all internal operations O(1)

http://danga.com/words/

http://danga.com/words/

Perlbal

Web Load Bal

* BIG-IP, Alteon, Juniper, Foundry
- good for L4 or minimal L7
- not tricky / fun enough. :-)
* Tried a dozen reverse proxies
- none did what we wanted or were fast enough
* Wrote Perlbal
- fast, smart, manageable HTTP web server / reverse proxy / LB
- can do internal redirects
» and dozen other tricks

http://danga.com/words/

Perlbal

* Perl
 parts optionally in C with plugins
* single threaded, async event-based
- uses epoll, kqueue, etc.
» console / HTTP remote management
- live config changes
* handles dead nodes, smart balancing
* multiple modes
- static webserver
- reverse proxy
- plug-ins (Javascript message bus.....)
* plug-ins
- GIF/PNG altering,

http://danga.com/words/

= -\

41

Perlbal: Pe

= -\
http://danga.com/words/

42

Perlbal: Persistent Con

 perlbal to backends (mod_perls)
- know exactly when a connection is ready for a new

request
e no complex load balancing logic: just use whatever's free.
beats managing “weighted round robin” hell.

* clients persistent; not tied to a specific backend
connection

http://danga.com/words/

Perlbal: Persistent Con

 perlbal to backends (mod_perls)
- know exactly when a connection is ready for a new

request
e no complex load balancing logic: just use whatever's free.
beats managing “weighted round robin” hell.

* clients persistent; not tied to a specific backend
connection

PB

http://danga.com/words/

Perlbal: Persistent Conne

* perlbal to backends (mod_perls)
- know exactly when a connection is ready for a new

request
e no complex load balancing logic: just use whatever's free.
beats managing “weighted round robin” hell.

* clients persistent; not tied to a specific backend
connection

Client Apache

PB

Client Apache

http://danga.com/words/ " I \

42

Perlbal: Persistent Connectior

* perlbal to backends (mod_perls)
- know exactly when a connection is ready for a new

request
e no complex load balancing logic: just use whatever's free.
beats managing “weighted round robin” hell.

* clients persistent; not tied to a specific backend
connection

Client reqAl, A2 reqAl, B2 Apache

reqB1, B2 Pl

Client / ‘rqu}b Apache

http://danga.com/words/ |

42

Perlbal: can verify new backend
connections

#include <sys/socket.h>
int listen(int sockfd, int backlog) ;

e connects to backends are often fast, but...
 are you talking to the kernel’s listen queue?
» or apache? (did apache accept() yet?)
* send OPTIONSs request to see if apache is
there
- Apache can reply to OPTIONS request quickly,
- then Perlbal knows that conn is bound to an
apache process, not waiting in a kernel queue
* Huge improvement to user-visible latency!
* (and more fair/even load balancing)

http://danga.com/words/

43

Perlbal: multi

* high, normal, low priority queues
* paid users -> high queue
* bots/spiders/suspect traffic -> low queue

= N
http://danga.com/words/

44

Perlbal: cooperative

* large file serving w/ mod_perl bad...
- mod_perl has better things to do than spoon-feed
clients bytes

http://danga.com/words/

Perlbal: cooperative lar

* internal redirects
- mod_perl can pass off serving a big file to Perlbal
* either from disk, or from other URL(s)
- client sees no HT TP redirect
- “Friends-only” images
* one, clean URL

 mod_perl does auth, and is done.
 perlbal serves.

http://danga.com/words/

Internal redir

1. HTTP request

2. HTTF reguest w/

H-Proxy-Capabilities: reproxy

http://danga.col |,

mod_perl

Perlbal

4. Request

3. Response,
¥-Reproxy-URL: http://, http://

TUX, thttpd,
mogstored

D000

T 6. Merged Response (3's headers, 5's body)

5. Response

TUX, thttpd,
mogstored

D000

=

47

And the reverse...

* Now Perlbal can buffer uploads as well..
- Problems:
* LifeBlog uploading
-cellphones are slow
* LivedJournal/Friendster photo uploads
-cable/DSL uploads still slow
- decide to buffer to “disk™ (tmpfs, likely)
*on any of: rate, size, time
* blast at backend, only when full request is in

http://danga.com/words/

48

Palette Alterin

* based on palette indexes, colors in URL,
dynamically alter GIF/PNG palette table, then
sendfile(2) the rest.

A
http://danga.com/words/

N

49

MogileFS

P =\
http://danga.com/words/ ﬁ | -

50

oMgFileS

P =\
http://danga.com/words/ ﬁ | -

51

MogileF

* our distributed file system
°* Oopen source
* userspace
* based all around HTTP (NFS support now removed)

 hardly unique

- Google GFS

- Nutch Distributed File System (NDFS)
* production-quality

- lot of users

- lot of big installs

http://danga.com/words/

MogileFS: Why

 alternatives at time were either:
- closed, non-existent, expensive, in development,
complicated, ...
- scary/impossible when it came to data recovery
* new/uncommon/ unstudied on-disk formats
* because it was easy
- initial version = 1 weekend! :)
- current version = many, many weekends :)

http://danga.com/words/

MogileFS

* files belong to classes,
which dictate:
- replication policy, min
replicas, ...
 tracks what disks files
are on
- set disk's state (up,
temp down, dead)
and host
» keep replicas on devices
on different hosts

- (default class policy)
- No RAID!

http://danga.com/words/

- Main ldeas

- multiple tracker
databases

- all share same
database cluster
(MySQL, etc..)

* big, cheap disks

- dumb storage nodes
w/ 12, 16 disks, no
RAID

54

MogileFS

clients
mogilefsd (does all real work)

database(s) (MySQL, abstract)
storage nodes

= =\
http://danga.com/words/

55

MogileFS: Cli

* tiny text-based protocol

* Libraries available for:

- Perl
» tied filehandles
* MogileFS::Client
- my $fh = $mogc->new _file(“key”, [[$class], ...])

- Java

- PHP

- Python?

- porting to SLANG is be trivial

- future: no custom protocol. only HTTP

e clients don't do database access

http://danga.com/words/

MogileFS: Tracker
(mogilefsd)

 The Meat
» event-based message bus
 load balances client requests, world info

* process manager
- heartbeats/watchdog, respawner, ...

* Child processes:

- ~30x client interface (“query” process)
* interfaces client protocol w/ db(s), etc

- ~5X replicate
- ~2X delete
- ~1x fsck, reap, monitor, ..., ...

http://danga.com/words/

Trackers' Database

* Abstract as of Mogile 2.x
- MySQL
- SQLite (joke/demo)
- Pg/Oracle coming soon?
- Also future:
* wrapper driver, partitioning any above
- small metadata in one driver (MySQL Cluster?),
- large tables partitioned over 2-node HA pairs
 Recommend config:
- 2xMySQL InnoDB on DRBD
- 2 slaves underneath HA VIP
* 1 for backups
* read-only slave for during master failover window

= | -\
http://danga.com/words/

58

MogileFS storage node
(mogstored)

« HTTP transport
- GET
- PUT
- DELETE
* mogstored listens on 2 ports...
* HTTP. --server={peribal,lighttpd,...}
* configs/manages your webserver of choice.
» perlbal is default. some people like apache, etc
- management/status:
* jostat interface, AlO control, multi-stat() (for faster
fsck)
* files on filesystem, not DB
- sendfile()! future: splice()
- filesystem can be any filesystem

http://danga.com/words/

59

FotoBilder image
GET request

Large file
GET
request

http://danga.com/words/ tracker database

60

FotoBilder image Client

GET request

Auth: complex, but quick

Large file
GET
request

2 | A—
storage nodes

http://danga.com/words/

60

FotoBilder image [;/ Client Spoonfeedmg:
GET request S|OW, but event

based

Auth: complex, but quick

L, \ ’ L’_-=’ BIG-IPs (hoWfailover)

Large file
GET
request

storage nodes

http://danga.com/words/

60

http://danga.com/words/

Gearman

http://danga.com/words/

manaGer

Manager

dispatches work,
but doesn't do anything useful itself. :)

= =\
http://danga.com/words/ ‘ :

63

Gearman

» system to load balance function calls...
* scatter/gather bunch of calls in parallel,
» different languages,
* db connection pooling,
» spread CPU usage around your network,
* keep heavy libraries out of caller code,

http://danga.com/words/

A

O

64

Gearman Pieces

e gearmand
- the function call router
- event-loop (epoll, kqueue, etc)
* workers.
- Gearman::Worker — perl/ruby
- register/heartbeat/grab jobs
* clients
- Gearman::Client[::Async] -- perl
- also Ruby Gearman::Client
- submit jobs to gearmand
- opaque (to server) “funcname” string
- optional opaque (to server) “args” string
- opt coallescing key

http://danga.com/words/

65

http://danga.com/words/

http://danga.com/words/

Gea

gearmand

gearmand

gearmand

-

66

http://danga.com/words/

Gearn

gearmand

gearmand

gearmand

Worker

Worker

/—l—\

66

http://danga.com/words/

Gearm

gearmand

gearmand | | gearmand

A

can_do(“funcA”)
can_do(“funcB”)

Worker

4

an_do(“funcA”)

Worker

/—l—\

66

Client

http://danga.com/words/

Gearma

gearmand

gearmand | | gearmand

A

can_do(“funcA”)
can_do(“funcB”)

Worker

4

an_do(“funcA”)

Worker

@& | >

66

call(“funcA”)

Client

http://danga.com/words/

Gearman

gearmand || gearmand

gearmand

can_do(“funcA”)
can_do(“funcB”)

\‘r
\ an_do(“funcA”)
\

Worker

Worker

@& | >

66

call(“funcA”)

Gearman

gearmand

gearmand | | gearmand

Client

Client

http://danga.com/words/

u

can_do(“funcA”)
can_do(“funcB”)

Worker

\ an_do(“funcA”)
v

Worker

@ | D

66

call(“funcA”)

call(“funcB”)

Gearman

gearmand

gearmand

gearmand

Client

Client

http://danga.com/words/

can_do(“funcA”)
can_do(“funcB”)

L

Worker

\ an_do(“funcA”)
v

Worker

@& | D

66

Gearman Pro

» efficient binary protocol

« No XML

* but also line-based text protocol for admin
commands
—telnet to gearmand and get status
—useful for Nagios plugins, etc

http://danga.com/words/

=

-\

67

Gearman

* Image::Magick outside of your mod_perls!
* DBI connection pooling (DBD::Gofer +
Gearman)
* reducing load, improving visibility
* “services’
- can all be in different languages, too!

http://danga.com/words/

Gearman Uses,

* running code in parallel
- query ten databases at once

* running blocking code from event loops
- DBI from POE/Danga::Socket apps

» spreading CPU from ev loop daemons
» calling between different languages,

http://danga.com/words/

Gearman Misc

» Guarantees:
- none! hah! :)
* please wait for your results.
* if client goes away, no promises
- all retries on failures are done by client
* but server will notify client(s) if working worker
goes away.
* No policy/conventions in gearmand
- all policy/meaning between clients <-> workers

http://danga.com/words/

Sick Gea

* Don't actually use it like this... but:

http://danga.com/words/

use strict;
use DMap qgw(dmap) ;
DMap->set_job_servers("sammy", "papag");

my @foo = dmap { "$ =" . “hostname’ } (1..10);
print "dmap says:\n @foo";

$./dmap.pl
dmap says:
= sammy
papag
sammy
papag
sammy
papag
sammy
papag
sammy

0 = papag

P OOOONOOUTDES, WN

Gearman

* Gearman is sexy.
- especially the coalescing

 Check it out!

- It's kinda our little unadvertised secret
» oh crap, did | leak the secret?

http://danga.com/words/

TheSchwartz

P =\
http://danga.com/words/ ﬁ | -

73

TheSchwartz

 Like gearman:
- job queuing system
- opaque function name
- opaque “args” blob
- clients are either:
e submitting jobs
e workers
* But unlike gearman:
- Reliable job queueing system
- not low latency

- fire & forget (as opposed to gearman, where you wait for
result)

 currently library, not network service

http://danga.com/words/

TheSchwartz Pr

* insert job
- “grab” job (atomic grab)
- for 'n' seconds.

* mark job
* temp fall

- optional notes, rescheduling details..

done
job for future

* replace job with 1+ other jobs

- atomic.

http://danga.com/words/

TheSch

* backing store:
- a database

- uses Data::ObjectDriver
« MySQL,
* Postgres,
 SQLite,

+ but HA: you tell it @dbs, and it finds one to

insert job into
- likewise, workers foreach (@dbs) to do work

http://danga.com/words/

TheSchwartz u

* outgoing email (SMTP client)
- millions of emails per day
- TheSchwartz::Worker::SendEmail
- Email::Send::TheSchwartz
* LJ notifications
- ESN: event, subscription, notification
* one event (new post, etc) -> thousands of emails, SMSes,
XMPP messages, etc...
pinging external services
atomstream injection
dozens of users
shared farm for TypePad, Vox, LJ

http://danga.com/words/

gearmand + TheS

» gearmand: not reliable, low-latency, no disks
* TheSchwartz: latency, reliable, disks
* In TypePad:

- TheSchwartz, with gearman to fire off TheSchwartz

workers.

* disks, but low-latency
e future: no disks, SSD/Flash, MySQL Cluster

http://danga.com/words/

http://danga.com/words/

djabberd

djabberd

* Our Jabber/XMPP server
e powers our “LJ Talk™ service

* S2S: works with GoogleTalk, etc
* perl, event-based (epoall, etc)
* done 300,000+ conns

* tiny per-conn memory overhead
- release XML parser state if possible

http://danga.com/words/

djabberd hook

* everything is a hook

- not just auth! like, everything.
- auth,
- roster,
- vcard info (avatars),
- presence,
- delivery,
- Inter-node cluster delivery,
- ala mod_perl, gpsmtpd, etc.

* async hooks
- hooks phases can take as long as they want before
they answer, or decline to next phase in hook chain...
- we use Gearman::Client::Async

http://danga.com/words/

http://danga.com/words/

Tha

Questions to:
brad@danga.com

Software:
http://danga.com/
http://code.sixapart.com/

-

D

82

net.

Questions?

perlbal (httpd/proxy) Global Database

djabberd

Droxy 1 master_a ||master_b

slave1||slave?2 slave5

proxy4

proxys

djabberd

| [l User DB Cluster 1

ucla [**| uclb

Mogile Storage Nodes

User DB Cluster 2
uc2a [**| uc2b

gearmand1
| gearmandN |

mCN User DB Cluster 3
i uc3a |« uc3b

Mogile Trackers

tracker1 || tracker3

User DB Cluster N

"

ucNa [*=| ucNb

MogileFS Database »
) gearwrkN RN Job Queues (xN)
mog_a | mog_ | theschwkN | | + > jgNa [==| jgNb
— 9 9

,//\\4

slave1

CO

slaveN A |

http

83

* If extra time

= =\
http://danga.com/words/ ‘ :

84

Data Integrity

» Databases depend on fsync()
- but databases can't send raw SCSI/ATA commands
to flush controller caches, etc

* fsync() almost never works work
- Linux, FS' (lack of) barriers, raid cards, controllers,
disks,
» Solution: test! & fix
- disk-checker.pl

e client/server
» spew writes/fsyncs, record intentions on alive machine,
yank power, checks.

http://danga.com/words/

Persistent Connectio

e connections == threads == memory
- My pet peeve:

e want connection/thread distinction in MySQL!
« w/ max-runnable-threads tunable

* max threads
- limit max memory/concurrency

 DBD::Gofer + Gearman
- Ask

* Data::ObjectDriver + Gearman

http://danga.com/words/

