
Inside LiveJournal's Backend
or,

“holy hell that's a lot of hits!”

April 2004

Brad Fitzpatrick
brad@danga.com

Danga Interactive
danga.com / livejournal.com

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/1.0/ or send a letter to

Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

LiveJournal Overview

● college hobby project, Apr 1999
● blogging, forums
● aggregator, social-networking ('friends')
● 2.8 million accounts; ~half active
● 40-50M dynamic hits/day. 700-800/second

at peak hours
● why it's interesting to you...

– 60+ servers
– lots of MySQL usage

LiveJournal Backend
(as of a few months ago)

Backend Evolution

● From 1 server to 60+....
– where it hurts
– how to fix

● Learn from this!
– don't repeat my mistakes
– can implement our design on a single server

One Server

● shared server
● dedicated server (still rented)

– still hurting, but could tune it
– learn Unix pretty quickly (first root)
– CGI to FastCGI

● Simple

One Server - Problems

● Site gets slow eventually.
– reach point where tuning doesn't help

● Need servers
– start “paid accounts”

Two Servers

● Paid account revenue buys:
– Kenny: 6U Dell web server
– Cartman: 6U Dell database

server
● bigger / extra disks

● Network simple
– 2 NICs each

● Cartman runs MySQL on
internal network

Two Servers - Problems

● Two points of failure
● No hot or cold spares
● Site gets slow again.

– CPU-bound on web node
– need more web nodes...

Four Servers

● Buy two more web nodes (1U this time)
– Kyle, Stan

● Overview: 3 webs, 1 db
● Now we need to load-balance!

– Kept Kenny as gateway to outside world
– mod_backhand amongst 'em all

mod_backhand

● web nodes broadcasting their state
– free/busy apache children
– system load
– ...

● internally proxying requests around
– network cheap

Four Servers - Problems

● Points of failure:
– database
– kenny (but could switch to another gateway

easily when needed, or used heartbeat, but we
didn't)

● Site gets slow...
– IO-bound
– need another database server ...
– ... how to use another database?

Five Servers
introducing MySQL replication

● We buy a new database server
● MySQL replication
● Writes to Cartman (master)
● Reads from both

Replication Implementation

● get_db_handle() : $dbh
– existing

● get_db_reader() : $dbr
– transition to this
– weighted selection

● permissions: slaves select-only
– mysql option for this now

● be prepared for replication lag
– easy to detect in MySQL 4.x
– user actions from $dbh, not $dbr

More Servers

● Site's fast for a while,
● Then slow
● More web servers,
● More database slaves,
● ...
● IO vs CPU fight
● BIG-IP load balancers

– cheap from usenet
– two, but not automatic

fail-over (no support
contract)

– LVS would work too

Chaos!

Where we're at...

Problems with Architecture
or,

“This don't scale...”

● Slaves upon slaves doesn't scale well...
– only spreads reads
– databases eventual consumed by writing

● 1 server: 100 reads, 10 writes (10% writes)
● Traffic doubles: 200 reads, 20 writes (10% writes)

– imagine nearing threshold
● 2 servers: 100 reads, 20 writes (20% writes)

● Database master is point of failure
● Reparenting slaves on master failure is tricky

Spreading Writes

● Our database machines already did RAID
● We did backups
● So why put user data on 6+ slave machines?

 (~12+ disks)
– overkill redundancy
– wasting time writing everywhere

Introducing User Clusters

● Already had get_db_handle() vs
get_db_reader()

● Specialized handles:
● Partition dataset

– can't join. don't care. never join user data w/
other user data

● Each user assigned to a cluster number
● Each cluster has multiple machines

– writes self-contained in cluster (writing to 2-3
machines, not 6)

User Cluster Implementation

● $u = LJ::load_user(“brad”)
– hits global cluster
– $u object contains its clusterid

● $dbcm = LJ::get_cluster_master($u)
– writes
– definitive reads

● $dbcr = LJ::get_cluster_reader($u)
– reads

User Clusters

● almost resembles today's architecture

User Cluster Implementation

● per-user numberspaces
– can't use AUTO_INCREMENT
– avoid it also on final column in multi-col index:

(MyISAM-only feature)
● CREATE TABLE foo (uid INT, postid INT

AUTO_INCREMENT, PRIMARY KEY (userid, postid))
● moving users around clusters

– balancing disk IO
– balance disk space
– monitor everything

● cricket
● nagios
● ...whatever works

Subclusters

● easy at this point; APIs already exist
● multiple databases per real cluster

– lj_50
– lj_51
– lj_52
– ...

● MyISAM performance hack
● incremental maintenance

Where we're at...

Points of Failure

● 1 x Global master
– lame

● n x User cluster masters
– n x lame.

● Slave reliance
– one dies, others reading too much

Solution?

Master-Master Clusters!

– two identical machines per cluster
● both “good” machines

– do all reads/writes to one at a time, both
replicate from each other

– intentionally only use half our DB hardware at a
time to be prepared for crashes

– easy maintenance by flipping the active in pair
– no points of failure

Master-Master Prereqs

● failover can't break replication, be it:
– automatic (be prepared for flapping)
– by hand (probably have other problems)

● fun/tricky part is number allocation
– same number allocated on both pairs
– cross-replicate, explode.

● strategies
– odd/even numbering (a=odd, b=even)

● if numbering is public, users suspicious
– where's my missing _______ ?
– solution: prevent enumeration. add gibberish 'anum' = rand

(256). visiblenum = (realid << 8 + anum). verify/store the
anum

– 3rd party arbitrator for synchronization

Cold Co-Master

● inactive pair isn't getting reads
● after switching active machine, caches full,

but not useful (few min to hours)
● switch at night, or
● sniff reads on active pair, replay to inactive

guy

Summary Thus Far

● Dual BIG-IPs (or LVS+heartbeat, or..)
● 30-40 web servers
● 1 “global cluster”:

– non-user/multi-user data
– what user is where?
– master-slave (lame)

● point of failure; only cold spares
● pretty small dataset (<4 GB)

– MySQL cluster looks potentially interesting
– or master-election

● bunch of “user clusters”:
– master-slave (old ones)
– master-master (new ones)

● ...

Static files...

Directory

Dynamic vs. Static Content

● static content
– images, CSS
– TUX, epoll-thttpd, etc. w/ thousands conns
– boring, easy

● dynamic content
– session-aware

● site theme
● browsing language

– security on items
– deal with heavy processes

● CDN (Akamai / Speedera)
– static easier, APIs to invalidate
– security: origin says 403 or 304

Misc MySQL Machines (Mmm...)

Directory

MyISAM vs. InnoDB

● We use both
● This is all nicely documented on mysql.com
● MyISAM

– fast for reading xor writing,
– bad concurrency, compact,
– no foreign keys, constraints, etc
– easy to admin

● InnoDB
– ACID
– good concurrency

● Mix-and-match. Design for both.

Directory & InnoDB

● Directory Search
– multi-second queries
– many at once
– InnoDB!
– replicates subset of tables from global cluster
– some data on both global and user

● write to both
● read from directory for searching
● read from user cluster when loading use data

Postfix & MySQL

● Postfix
– 4 servers: postfix + mysql maps
– replicating one table: email_aliases

● Secondary Mail Queue
– async job system
– random cluster master
– serialize message.

Logging to MySQL

● mod_perl logging handler
● new table per hour

– MyISAM
● Apache access logging off

– diskless web nodes, PXE boot
– apache error logs through syslog-ng

● INSERT DELAYED
– increase your insert buffer if querying

● minimal/no indexes
– table scans are fine

● background job doing log analysis/rotation

Load Balancing!

Web Load Balancing

● slow client problem (hogging mod_perl/php)
● BIG-IP [mostly] packet-level
● doesn't buffer HTTP responses
● BIG-IP can't adjust server weighting quick

enough
– few ms to multiple seconds responses

● mod_perl broadcasting state
– Inline.pm to Apache scoreboard

● mod_proxy+mod_rewrite
– external rewrite map (listening to mod_perl

broadcasts)
– map destination is [P] (mod_proxy)

● Monobal

DBI::Role – DB Load Balancing

● Our library on top of DBI
– GPL; not packaged anywhere but our cvs

● Returns handles given a role name
– master (writes), slave (reads)
– directory (innodb), ...
– cluster<n>{,slave,a,b}
– Can cache connections within a request or

forever
● Verifies connections from previous request
● Realtime balancing of DB nodes within a role

– web / CLI interfaces (not part of library)
– dynamic reweighting when node down

Caching!

Caching

● caching's key to performance
● can't hit the DB all the time

– MyISAM: r/w concurrency problems
– InnoDB: good concurrency for disk
– MySQL has to parse your query all the time

● better with new MySQL binary protocol
● Where to cache?

– mod_perl caching (address space per apache child)
– shared memory (limited to single machine, same with

Java/C#/Mono)
– MySQL query cache: flushed per update, small max

size
– HEAP tables: fixed length rows, small max size

memcached
http://www.danga.com/memcached/

● our Open Source, distributed caching system
● run instances wherever there's free memory

– requests hashed out amongst them all
– choose to rehash or not on failure

● no “master node”
● protocol simple and XML-free; clients for:

– perl, java, php, python, ruby, ...
● In use by:

– LiveJournal, Slashdot, Wikipedia, ...
● People speeding up their:

– websites, mail servers, ...

memcached – speed

● C
– prototype Perl version proved concept, dog slow

● async IO, event-driven, single-threaded
● libevent (epoll, kqueue, select, poll...)

– run-time mode selection
● lockless, refcounted objects
● slab allocator

– glibc malloc died after 7~8 days
– slabs: no address space fragmentation ever.

● O(1) operations
– hash table inside
– Judy didn't work (malloc problems?)

● multi-server parallel fetch (can't do in DBI?)

LiveJournal and memcached

● 10 unique hosts
– none dedicated

● 28 instances
● 30 GB of cached data
● 90-93% hit rate

– not necessarily 90-93% less queries:
● FROM foo WHERE id IN (1, 2, 3)
● would be 3 memcache hits; 1 mysql query

– 90-93% potential disk seeks?
● 12 GB machine w/ five 2GB instances

– left-over 'big' machines from our learn-to-scale-
out days

What to Cache

● Everything?
● Start with stuff that's hot
● Look at your logs

– query log
– update log
– slow log

● Control MySQL logging at runtime
– can't

● help me bug them.
– sniff the queries! Net::Pcap

● tool to be released? bug me.
● canonicalize and count

– name queries: SELECT /* name=foo */

Caching Disadvantages

● updating your cache
– decide what's important
– when to do a clean read (from DB) vs potentially-

dirty read (from memcached)
● more crap to admin

– but memcached is easy
– one real option: memory to use

● disable rehashing, or be prepared
– small, quick objects

● “time user #123 last posted = t”
– heavy objects with unlimited lifetime, containing

small item too
● “last 100 recent post ids for user #123, as of time t”

– application can detect problems

MySQL Persistent Connection
Woes

● connections == threads == memory
– (until MySQL 5.x? thanks, Brian!)

● max threads
– limit max memory

● with 10 user clusters:
– Bob is on cluster 5
– Alice on cluser 6
– Do you need Bob's DB handles alive while you

process Alice's request?
● Major wins by disabling persistent conns

– still use persistent memcached conns

Software Overview

● Linux 2.4
– database servers

● Linux 2.6
– web nodes; memcached (epoll)
– experimenting on dbs w/ master-master

● Debian woody
– moving to sarge

● BIG-IPs
– got new ones, w/ auto fail-over
– management so nice, anti-DoS

● mod_perl

Questions?

Thank you!

Questions to...
brad@danga.com

Slides linked off:
http://www.danga.com/words/

