
Perlbal: Reverse Proxy & Webserver

● Brad Fitzpatrick
– brad@danga.com

● Danga Interactive
– Open Source company
– Services

● LiveJournal.com
● PicPix.com (soon) / pics.livejournal.com

– Tools
● DBI::Role
● memcached
● mogilefs (distributed filesystem)
● Perlbal

Features

● Reverse proxy load balancer
● Buffers backend responses

– frees heavy mod_perl/mod_php/mod_foo early
● Can internally “reproxy” to another URL or

file
● Web server mode (after thought)

– survives when thttpd hasn't, uses epoll
● 'epoll', for handling many connections

efficiently. 'sendfile' for less CPU usage
● Console/HTTP management

Why not just ______?

● Buffering
– BIG-IP does ~16k

● configurable in 9.x, but limited memory on a single
box

– Apache does ~128k (tcp send buffer). can tell
kernel to increase.

● “Internal proxy”
– client sees no redirect
– switch between internal servers
– auth/URI trans in mod_perl/etc
– quick webserver (thttpd/TUX/perlbal)

● skipping ahead: IO::Sendfile!
● Custom LB / no proxy connect errors

Web server mode

● Why reproxy to another webserver?
● Why not reproxy to a file?
● Hard work already done
● nonblock network easy
● nonblock VFS stuff harder
● nonblock stat() / open() hard

– once open, sendfile() to nonblock socket no
prob: IO::SendFile

Our setup

● Two BIG-IPs (active / standby)
– vip livejournal.com:80 = 4 perlbals

● Previously:
– to 4 mod_proxy, to mod_rewrite, to external

rewrite map “prg:” doing sendstats (like
mod_backhand)

● Sendstats no longer necessary:
– persistent backend connections

● 1.0 only, don't have to dechunk, dynamic
responses rare

– verify backends with OPTIONS
● talking to Apache, not kernel

Perlbal::Socket

● Singleton event loop
● constructor registers self with event loop;

single threaded, non-blocking, event-based
● POE-like
● uses epoll (Linux 2.6) or poll

– IO::Poll flakey. use IO::Poll::_poll which is
reliable.

– epoll via perl's 'syscall'. IO::Epoll was flakey.
● Later found useful for

– ddlockd, mogilefsd, etc
– pushed down into Danga::Socket

use fields

● so damn cool
● compile-time member checking

– 'use strict' for OO
– when typed (my Foo $a), then hash access are

actually array accesses ($a->{bar} compiles to
$a->[18])

● run-time member checking
– when not typed
– hash+array lookup. still strict.

● confidence to do big OO projects

Linux::AIO

● uses linux's clone()
● shared pipe to cloned child to alert of

waiting jobs
● fd parent can [e]poll on. Linux::AIO calls

closure when told to (via fd readiness)
● before this, cycles
● not portable

– may change to thttpd style: unix socket to
blocking IO workers. pass fds.

doo dads

● management port
– every console command can be in config file or

set at runtime
– console commands that look like HTTP are

treated as such, and web UI runs (ssh -L8065:
proxy:8065... http://localhost:8065/)

● “connect-ahead”

Perlbal Plug-ins

● hooks into core Perlbal code
– as needed now. documented. could add

more.
● currently plug-ins for

– stats (counts connections)
– queues (shows queue depths)
– palette modifications on GIF/PNG

● lets user customize their colors and makes
accompanying images match theme, without
dynamically generating the images.

● palette table is in first few bytes, then sendfile() the
rest.

– de-animate GIFs (upcoming, byte toggle)

MogileFS distributed file system; HTTP
PUT support

● storage nodes have disks
● files are on 'n' disks on different hosts
● Min replica count 'n' based on class of file
● Dozens of NFS problems

– nfs_inode_cache, corruption, export limitations
● Perlbal!

– storage nodes run Perlbal for GETs
– how to PUT?
– PUT support, optional (off by default)
– change wrapper script so no config needed

Code: Linux::AIO

Linux::AIO::aio_stat($file, sub {
 return if $self->{closed}; # client away
 return $self->_simple_response(404) unless -e _;

 Linux::AIO::aio_open($file, 0, 0, sub {
 my $rp_fd = shift;

 $self->state('xfer_disk');
 $self->tcp_cork(1); # cork writes to self
 $self->write($res->to_string_ref);
 $self->reproxy_fd($rp_fd, $size);
 });
});

Code: epoll wrappers

our $HAVE_SYSCALL_PH = eval { require 'syscall.ph'; 1 };
our $SYS_epoll_create = eval { &SYS_epoll_create };
our $SYS_epoll_ctl = eval { &SYS_epoll_ctl };

ARGS: (size)
sub epoll_create {
 my $epfd = eval { syscall($SYS_epoll_create, $_[0]) };
 return -1 if $@;
 return $epfd;
}

ARGS: (epfd, op, fd, events)
sub epoll_ctl {
 syscall($SYS_epoll_ctl, $_[0]+0, $_[1]+0, $_[2]+0,
 pack("LLL", $_[3], $_[2]));
}
<snip> epoll_wait...

Code: use fields

package Rect;
use base Shape;
use fields qw(width height);
sub new {
 my Rect $self = shift;
 $self = fields::new($self) unless ref $self;
 ($self->{width}, $self->{height}) = @_;
 return $self;
}
...
my Rect $rect = Rect->new(10, 20);
print “$rect->{hieght}\n”;

^^^^^^
COMPILE-TIME ERROR! (or runtime error without typing)
Compiles to:
 $rect->[14] (or whatever index)

Questions?

the end.

Brad Fitzpatrick
brad@danga.com

Mark Smith
marksmith@danga.com

Danga Interactive
http://www.danga.com/

All our stuff's Open Source:
http://cvs.danga.com/
http://cvs.livejournal.org/

