LiveJournal's Backend
A history of scaling

August 2005

Brad Fitzpatrick
brad@danga.com

danga.com / livejournal.com / sixapart.com

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/1.0/ or send a letter to
Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

SOMEFRIGHTS RESERLUED

©Ebramons

http://www.danga.com/words/



LiveJournal Overview

college hobby project, Apr 1999
- “blogging”, forums

- social-networking (friends)

- aggregator: “friend's page”

Built on Open Source

All Open Source itself

Rapid growth

— April 2004: 2.8 million accounts

— April 2005: 6.8 million accounts (Aug: 7.9M)
several thousands of hits/second
lots of MySQL

lots of custom (open source) infrastructure

http://www.danga.com/words/



Dropping names

* Wikipedia

* Slashdot

* Sourceforge

* Meetup

* HowardStern.com

* Facebook

* GUBA (large “content” site)
e parts of Perl.com?

* new gpsmptd

http://www.danga.com/words/



LiveJournal Backend: Today
Roughly.

BIG-IP

Global Database

mod_perl master_a |master_b

Mogile Storage Nodes

mog_a | mog b [

http://www.danga.com/words/




LiveJournal Backend: Today
_Roughly.

___—

BIG-IP

| bigip2 | i

per!! = Global Database

RELAR

slaveb

b

Juczo |
er3

Je= uc3b ]

>« DB Cluster 4

T uocta [ uoi |

Mogile S

Mool 9

MogileFS Database

http://www.danga.com/words/




The plan...

* Terminology
* Backend evolution
— work up to previous diagram
* Four ways to do MySQL clusters
- for high-availability and load balancing
e Caching
- memcached
* Web load balancing
- Proprietary, open source, ours: Perlbal

* MogileFS
* Questions
- end, or anytime

http://www.danga.com/words/



Terminology: “Cluster”

* multiple machines
* why?

http://www.danga.com/words/



Aside

* best Venn diagram ever

http://www.danga.com/words/



Terminology: “Scaling”

* NOT how fast your code is
* how fast your code will be tomorrow

* can it “scale out™?
- run in parallel?
- algorithm's asymptotic performance?

— common resources causing blocking?
* say, NFS server

http://www.danga.com/words/



Backend Evolution

* From 1 server to 100+....
- where it hurts
- how to fix
* Learn from this!
- don't repeat my mistakes
- can implement our design on a single server

http://www.danga.com/words/



One Server

e shared server

* dedicated server (still rented)
— still hurting, but could tune it

- learn Unix pretty quickly (first root)
- CGl to FastCGil

* Simple

http://www.danga.com/words/



One Server - Problems

* Site gets slow eventually.
— reach point where tuning doesn't help

* Need servers
- start “paid accounts”

 SPOF (Single Point of Failure):
- the box itself

http://www.danga.com/words/



Two Servers

* Paid account revenue buys:
- Kenny: 6U Dell web server
- Cartman: 6U Dell database

server
* bigger / extra disks

* Network simple
- 2 NICs each

e Cartman runs MySQL on
Internal network

http://www.danga.com/words/




Two Servers - Problems

* Two single points of failure
* No hot or cold spares

* Site gets slow again.
— CPU-bound on web node
- need more web nodes...

http://www.danga.com/words/



Four Servers

* Buy two more web nodes (1U this time)
- Kyle, Stan

e Overview: 3 webs, 1 db

* Now we need to load-balance!

- Kept Kenny as gateway to outside world
- mod_backhand amongst 'em all

)
Al
"-..-"IIIJ
[f
N




Four Servers - Problems

* Points of failure:
- database
- public web node (but could switch to another
gateway easily when needed, or used heartbeat,
but we didn't)
* nowadays: Whackamole
e Site gets slow...
- 10-bound
- need another database server ...
- ... how to use another database?

http://www.danga.com/words/



Five Servers
introducing MySQL replication

* We buy a new database server
* MySQL replication

* Writes to DB (master)

* Reads from both

Writes/
Reads

— ==

) \ Replication
e "&




Replication Implementation

* get_db handle() : $dbh
— existing
* get db reader() : $dbr
- transition to this
— weighted selection
* permissions: slaves select-only
- mysql option for this now
* be prepared for replication lag

- easy to detect in MySQL 4.x
— user actions from $dbh, not $dbr

http://www.danga.com/words/



More Servers

Site's fast for a while,
Then slow
More web servers,

More database slaves,

10 vs CPU fight

BIG-IP load balancers

- cheap from usenet

- two, but not automatic

fail-over (no support

contract)
- LVS would work too

http://www.danga.com/words/



Where we're at....

BIG-IP

mod_proxy

web

* web2
web3

web4

web12

http://www.danga.com/words/



Problems with Architecture

“This don t scale...”

* DB master is SPOF

* Slaves upon slaves doesn't scale well...
— only spreads reads

w/ 1 server w/ 2 servers

500 reads/s

250 reads/s 250 reads/s

200 write/s 200 write/s

200 writes/s

http://www.danga.com/words/



Eventually...

* databases eventual consumed by writing

400

write/s

400

write/s |

400 |
write/s

400
write/s

400

write/s

400 |
write/s

400

write/s

http://www.danga.com/words/




Spreading Writes

* Our database machines already did RAID

* We did backups

* So why put user data on 6+ slave machines?
(~12+ disks)
— overkill redundancy
— wasting time writing everywhere

http://www.danga.com/words/



Introducing User Clusters

* Already had get_db_handle() vs
get db reader()
e Specialized handles:

* Partition dataset
— can't join. don't care. never join user data w/
other user data

* Each user assigned to a cluster number

* Each cluster has multiple machines
- writes self-contained in cluster (writing to 2-3
machines, not 6)

http://www.danga.com/words/



User Clusters

SELECT userid,
clusterid FROM
user WHERE
user="bob'

—— — .Ill_l

S

- -
= e — —
e _'_'_.-'
-
-

"-\._\_\_ _'_'_.o—'

e ,.-""
-
- S
-
_a-"_'_‘-._\_'_ . ,__f

http://www.danga.com/words/



User Clusters

SELECT userid,
clusterid FROM
user WHERE
user="bob'

N
/

userid: 839
clusterid: 2

. £
d:—hh‘-'ff—__ _.d_!—__

- S
-
- - 5
- -
- __.-' H--‘—‘— — —"'---
_—_ R
.
- —
e -

http://www.danga.com/words/



User Clusters

SELECT userid, SELECT
clusterid FROM FROM ...
user WHERE : WHERE
user="'bob' N userid=839
userid: 839

clusterid: 2

. £
::L;L ) d_!—__

- -
- - 3
- -
- - Te— 7
-

.
-
-H"\—\_ _,_o—"'.

http://www.danga.com/words/



SELECT userid,
clusterid FROM
user WHERE
user="bob'

userid:

c1uster1d.

2

User Clusters

) -H-"—\_ -
“ .

d:—hh‘-'ff—__ _.d_!—__

- ~—
-
-~ - '
- -
— - —_ — —_—
_ -
-
- P

http://www.danga.com/words/

SELECT
FROM ...
WHERE
userid=839

OMG 1 like
totally hate
my parents
they just
dont
understand me
and i h8 the
world omg 1ol

rofl *! /-
AN .

’

add me as a
friend!!!



User Cluster Implementation

* per-user numberspaces

- can't use AUTO INCREMENT

e user A has id 5 on cluster 1.
e user B has id 5 on cluster 2... can't move to cluster 1

- PRIMARY KEY (userid, users_postid)

* InnoDB clusters this. user moves fast. most space
freed in B-Tree when deleting from source.

* moving users around clusters
- have a read-only flag on users
— careful user mover tool

- user-moving harness
* job server that coordinates, distributed long-lived
user-mover clients who ask for tasks

- balancing disk 1/O, disk space

http://www.danga.com/words/



User Cluster Implementation

e $u = LJ::load user(“brad”)
— hits global cluster
- $u object contains its clusterid

e $dbcm = LJ::get_cluster _master(3u)
- old

* $u->do(“UPDATE foo SET ...")

e $u->selectrow _array(“...”)
- allocates correct handle, proxies to DBI
- new

http://www.danga.com/words/



DBI::Role — DB Load Balancing

* Our little library to give us DBI handles
- GPL; not packaged anywhere but our cvs
* Returns handles given a role name
- master (writes), slave (reads)
- cluster<n>{ slave,a,b}
- Can cache connections within a request or
forever
* Verifies connections from previous request

* Realtime balancing of DB nodes within a role
- web / CLI interfaces (not part of library)
- dynamic reweighting when node down

http://www.danga.com/words/



Where we're at...

BIG-IP

Global Database

master
DU JE

web1

web2

web3

web4 User DB Cluster 1
web25

slave2

User DB Cluster2

slave2

http://www.danga.com/words/




Points of Failure

* 1 x Global master
- lame

e n x User cluster masters
- n X lame.

* Slave reliance
— one dies, others reading too much

Global Database

master

User DB Cluster2

master

User DB Cluster 1

master

slave1| slave?2 slaveb

Solution? ...

http://www.danga.com/words/



Master-Master Clusters!

— two identical machines per cluster
* both “good” machines

- do all reads/writes to one at a time, both replicate
from each other

- intentionally only use half our DB hardware at a
time to be prepared for crashes

- easy maintenance by flipping the active in pair

— no points of failure

User DB Cluster 2

! N
app
http://www.danga.com/words/

al




Master-Master Prereqs

* failover shouldn't break replication, be it:
- automatic (be prepared for flapping)
- by hand (probably have other problems)
* fun/tricky part is number allocation
- same number allocated on both pairs
— cross-replicate, explode.
* strategies

- odd/even numbering (a=odd, b=even)
* if numbering is public, users suspicious
- 3" party: global database (our solution)

http://www.danga.com/words/



Cold Co-Master

* inactive machine in pair isn't getting reads
* Strategies
- switch at night, or
- sniff reads on active pair, replay to inactive guy
- ignore it
* not a big deal with InnoDB

Clients

v |

Hot cache,
happy.

Cold cache,
sad. TA

>

-«

.. WWW. danga.



Where we're at...

BIG-IP

Global Database

master

User DB Cluster 1

master

http://www.danga.com/words/



MyISAM vs. InnoDB

http://www.danga.com/words/



MyISAM vs. InnoDB

e Use InnoDB.
- Really.

— Little bit more config work, but worth it:

* won't lose data
- (unless your disks are lying, see later...)

e fast as hell

* MylSAM for:
- logging

* we do our web access logs to it

- read-only static data
* plenty fast for reads

http://www.danga.com/words/



Logging to MySQL

* mod_perl logging handler
- INSERT DELAYED to mysq|
- MyISAM: appends to table w/o holes don't block

* Apache's access logging disabled
- diskless web nodes
- error logs through syslog-ng

* Problems:
- too many connections to MySQL, too many
connects/second (local port exhaustion)

- had to switch to specialized daemon
* daemons keeps persistent conn to MySQL
* other solutions weren't fast enough

http://www.danga.com/words/



Four Clustering Strategies...

http://www.danga.com/words/



Master / Slave

* doesn't always scale ikl
- reduces reads, not writes

o 500 reads/s
- cluster eventually writing full

t| me 200 writes/s

* good uses:
- read-centric applications X

- snapshot machine for backups
* can be underpowered

“ . ” w/ 2 servers
- box for “slow queries
* when specialized non-production
query required

- non-optimal index available

250 reads/s

200 write/s

http://www.danga.com/words/



Downsides

e Database master is SPOF

* Reparenting slaves on master failure is tricky

- hang new master as slave off old master
* while in production, loop:
- slave stop all slaves
— compare replication positions
- if unequal, slave start, repeat.
e eventually it'll match
- if equal, change all slaves to be slaves of new master, stop old

master, change config of who's the master
Global Database

new master

Global Database

master

Global Database

master

slave1| slave2 | new master slavel1| slave2| | new master

slave1 slave?




Master / Master

* great for maintenance
- flipping active side for maintenance / backups

* great for peace of mind
- two separate copies
e Con: requires careful schema

— easiest to design for from beginning
— harder to tack on later

User DB Cluster 1

http://www.danga.com/words/



MySQL Cluster

“MySQL Cluster”: the product
IN-memory only
- good for small datasets

* need 2-4x RAM as your dataset

* perhaps your {userid,username} -> user row (w/
clusterid) table?

new set of table quirks, restrictions
was in development
- perhaps better now?

Likely to kick ass in future:

- when not restricted to in-memory dataset.
* planned development, last | heard?

http://www.danga.com/words/



Shared Storage
(SAN, scsI, DRBD...)

* Turn pair of InnoDB machines into a cluster
- looks like 1 box to outside world. floating IP.

* One machine at a time running fs / MySQL

* Heartbeat to move IP, {un,}mount filesystem,
{stop,start} mysq|

* No special schema considerations

* MySQL 4.1 w/ binlog sync/flush options
- good
- The cluster can be a master or slave as well

http://www.danga.com/words/



Shared Storage: DRBD

* Linux block device driver
- sits atop another block device

- syncs w/ another machine's block device
e cross-over gigabit cable ideal. network is faster than
random writes on your disks usually.
* Warning:
— use dedicated gigabit crossover
- watch out for kernel memory fragmentation w/
heavy network usage
* 64-bit machines might help a bit
- large MTU: pros & cons.
* pros: speed
* cons: more fragmentation

http://www.danga.com/words/



MySQL Clustering Options:
Pros & Cons

* no magic bullet
* maybe in the future

http://www.danga.com/words/



Caching

http://www.danga.com/words/



Caching

* caching's key to performance
- store result of a computation for quicker future
access

e can't hit the DB all the time
- MyISAM: r/w concurrency problems
- InnoDB: better; not perfect

- MySQL has to parse your queries all the time
* better with new MySQL binary protocol

http://www.danga.com/words/



Where to cache?

- mod_perl caching
* memory waste (address space per apache child)

- shared memory
* limited to single machine, same with Java/C#/Mono

- MySQL query cache

* flushed per update, small max size

- HEAP tables

* fixed length rows, small max size

http://www.danga.com/words/



memcached

http://www.danga.com/memcached/

* our Open Source, distributed caching system

* run instances wherever there's free memory
- requests hashed out amongst them all

* no “master node”

e protocol simple and XML-free; clients for:
- perl, java, php, python, ruby, ...

* |[n use by lots of people

* People speeding up their:
- websites, mail servers, ...

* very fast.

http://www.danga.com/words/



LivedJournal and memcached

* 12 unique hosts
- none dedicated

e 28 Instances
e 30 GB of cached data
* 90-93% hit rate

http://www.danga.com/words/



What to Cache

* Everything?
o Start with stuff that's hot

* Look at your logs
- query log
- update log
- slow log

* Control MySQL logging at runtime
- can't
* help me bug them.
- sniff the queries!
* mysniff.pl (uses Net::Pcap and decodes mysql stuff)

e canonicalize and count
- or, name querie/ : SELECT [* pog/me=foo */

http:// www.danga.com/wo



Caching Disadvantages

* extra code
— updating your cache

— perhaps you can hide it all

* clean object setting/accessor API
— Data::ObectDriver (not yet released?)

* but don't cache (DB query) -> (result set)

- want finer granularity
* more stuff to admin
— but only one real option: memory to use
— In practice we haven't touched memcached
boxes/processes in ages

http://www.danga.com/words/



Web Load Balancing

http://www.danga.com/words/



Web Load Balancing

* BIG-IP [mostly] packet-level
- doesn't buffer HTTP responses
- need to spoon-feed clients
* BIG-IP and others can't adjust server
weighting quick enough
- DB apps have widly varying response times: few
ms to multiple seconds
* Tried a dozen reverse proxies
- none did what we wanted or were fast enough
* Wrote Perlbal

- fast, smart, manageable HTTP web server/proxy
— can do internal redirects

http://www.danga.com/words/



Perlbal

http://www.danga.com/words/



Perlbal

* Perl
* single threaded, async event-based
— uses epoll, kqueue
* console / HTTP remote management
- live config changes
* handles dead nodes, smart balancing
* multiple modes
— static webserver
- reverse proxy
- plug-ins (Javascript message bus.....)
* plug-ins
- GIF/PNG altering, ....

http://www.danga.com/words/



Perlbal: Persistent Connections

* persistent connections

- perlbal to backends (mod_perls)
* know exactly when a connection is ready for a new

request
- no complex load balancing logic: just use whatever's free.
beats managing “weighted round robin™ hell.

- clients persistent; not tied to backend

* verifies new connections
— connects often fast, but talking to kernel, not
apache (listen queue)
- send OPTIONSs request to see if apache is there
* multiple queues
- free vs. paid user queues

http://www.danga.com/words/



Perlbal: cooperative large file serving

* large file serving w/ mod_perl bad...
- mod_perl has better things to do than spoon-
feed clients bytes

* Internal redirects

- mod_perl can pass off serving a big file to
Perlbal

* either from disk, or from other URL(s)
- client sees no HT TP redirect
- “Friends-only” images

* one, clean URL

* mod_perl does auth, and is done.
* perlbal serves.

http://www.danga.com/words/



Internal redirect picture

- HIT= request T 5. Merged Fesponse (3w headzrs, B's body)
Perlhal 5. Response
2. HTT= request w/
AProxy-Cepabiliz es: reproxy
4. Reqiiest
2. hesponce, TUX, thttpd-
¥-Heoroxy4JHL: Fttp/, hotplly maog stored
mod_perl
ux theted, | (I
mogstored

OO0



MogileF$S

our distributed file system
open source

userspace
- started on FUSE port, lost interest

hardly unique
- Google GFS
— Nutch Distributed File System (NDFS)

production-quality

http://www.danga.com/words/



MogileFS: Why

* alternatives at time were either:
- closed, non-existent, expensive, in development,
complicated, ...
- scary/impossible when it came to data recovery

* because It was easy

http://www.danga.com/words/



MogileFS: Main Ideas

* MogileFS main ideas:
- files belong to classes
* classes: minimum replica counts

- tracks what disks files are on
* set disk's state (up, temp_down, dead) and host

- keep replicas on devices on different hosts
* Screw RAID! (for this, for databases it's good.)

— multiple tracker databases
* all share same MySQL database cluster

- big, cheap disks
* dumb storage nodes w/ 12, 16 disks, no RAID

http://www.danga.com/words/



MogileFS components

clients

trackers

mysql database cluster
storage nodes

http://www.danga.com/words/



MogileFS: Clients

* tiny text-based protocol

e Libraries available for:

- Perl (us)

* tied filehandles

- Java

- PHP

- Python?

- porting to $LANG is be ftrivial
* doesn't do database access

http://www.danga.com/words/



MogileFS: Tracker

* interface between client protocol and cluster of

MySQL machines
* also does automatic file replication, deleting,

etc.

http://www.danga.com/words/



MySQL database

* master-slave or, recommended: MySQL on
shared storage (DRBD/etc)

http://www.danga.com/words/



Storage nodes

* NFS or HTTP transport
— [Linux] NFS incredibly problematic

e HTTP transport is either:
- Perlbal with PUT & DELETE enabled

* "mogstored” wrapper just does “use Perlbal;” and sets up
config for you

- Apache with WebDAV
» Stores blobs on filesystem, not in database:
- otherwise can't sendfile() on them
— would require lots of user/kernel copies
- filesystem can be any filesystem

http://www.danga.com/words/



FotoBilder mage
GET request

Large file
GET
request

tracker dazaiase



-llert
Spoonfeeding:
slow, but event-

FotoBilder mage
GET request

Auth: complex,
but quick

Large file
GET -
request \
o

tracker o= umi



And the reverse...

* Now Perlbal can buffer uploads as well..

- Problems:
* LifeBlog uploading
— cellphones are slow

* LiveJournal/Friendster photo uploads
— cable/DSL uploads still slow

- decide to buffer to “disk” (tmpfs, likely)
* on any of: rate, size, time

- Big Ups to Mark “Junior” Smith

http://www.danga.com/words/



Things to watch out for...

http://www.danga.com/words/



MyISAM

* sucks at concurrency

- reads and writes at same time: can't
* except appends

* |oses data in unclean shutdown / powerloss
- requires slow myisamchk / REPAIR TABLE

- index corruption more often than I'd like
* InnoDB: checksums itself

e Solution:
- use InnoDB tables

http://www.danga.com/words/



Data Integrity

* Databases depend on fsync()
- else powerloss means terrible corruption
- databases can't send raw SCSI/ATA commands to
flush controller caches, etc

* fsync() almost never works work

- Lots of parties contribute to the problem:
* Linux, raid cards (LSI), controllers, disks, ....

e Solution: test & fix
- disk-checker.pl
* client/server
- fix:
* disk settings (scsirastols, take out of RAID),
controller/RAID settings, etc, etc....
http://www.danga.com/words/



Persistent Connection Woes

connections == threads == memory
- My pet peeve:

* want connection/thread distinction in MySQL!
* or lighter threads w/ max-runnable-threads tunable

max threads
— limit max memory

with user clusters:
- Do you need Bob's DB handles alive while you
process Alice's request?
* not if DB handles are in short supply!
Major wins by disabling persistent conns
- still use persistent memcached conns
- don't connect to DB often w/ memcached

http://www.danga.com/words/



In summary...

http://www.danga.com/words/



Software Overview

Linux 2.6

Debian sarge

MySQL
-4.0,4.1

- InnoDB, some MyISAM in specialized cases

BIG-IPs
mod_perl
Our stuff

- memcached

- Perlbal
- MogileFS

http://www.danga.com/words/



Thank you!

Questions to...
brad@danga.com

We're Hiring!
http://www.sixapart.com/jobs/

http://www.danga.com/words/



